FORMATION OF AN ICE LAYER OF GIVEN
THICKNESS BY ACCUMULATION OF A LIQUID
ON A COOLED-CYLINDRICALSURFACE

P. P. Yushkov and V. B. Rzhevskaya UDC 536.421.4

An approximate solution is given to the problem of accumulation of a liquid on a cylindrical
surface, taking into account thermal resistivity. Particular cases are considered.

In the accumulation of a liquid on ahighly-cooled-cylindrical surface, the problem arises of deter-
mining the formation time for a frozen layer of a given thickness. One meets with such problems, for ex-
ample, in the food industry in the operation of generators of squamate ice.

In this case, allowance for the influence of the thermal resistivity of the material of the cylindrical
wall of the cooler and its constructional dimensions turn out to be very significant.

Mathematically, the problem amounts to the solution of the equations
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and with given initial conditions

Thus, we consider the problem with a first-order boundary condition
on the inner surface and a third-order boundary condition on the outer sur-
face.

It is impossible to find an exact analytical solution of the problem.
Many varied approximate methods exist for the solution of such moving

‘. ’ boundary problems. They are partially enumerated in the interesting
Fig. 1. Formation of an article by A. M. Makarov [1]. In the present work, a practical method

ice layer on a cylindrical of solution is offered which is based on the replacement of the true tem-
surface. perature curves by their simplest analogs. Such approximation isaccepted
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in many works. In particular, L. S. Leibenzon [2] used this method in his thorough investigations.

We will assume the temperature in both intervals (ry, ry; + R) and (v; + R, ry + B + £) fo be in accor-
dance with the laws which are obtained in a steady-state distribution in a cylindrical wall, namely, in the
form

t,=Cilnr +C, and £t =Cylnr +C,.

Using the conditions in (5), (3) and (7), we find the value of the constants Ci{i =1, 2, 3, 4) and then
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This equation is useful in itself, since it allows approximate estimation of the temperature T at the phase
interface as a function of the thickness of the ice layer ¢ which has been formed.

Substituting (9) into (6), with allowance for (10), we obtain, after the obvious transformations, an
ordinary differential equation with separable variables (with tor = 0):
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Since the integral in (11) cannot be expressed in terms of elementary functions, then, using the
smallness of the value
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ro+ R
and changing the integrand to the form
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we expand the numerator and denominator of the last expression into power series. Designating the quo-
tient from division of the series in the form of a series with undetermined coefficients

@
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we obtain the identity
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from which, comparing the coefficients of identical powers of 5, we find the interesting numbers
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For practical calculations, as a result of the smaliness of ¢ it is adequate to limit oneself to two
terms of the series (15); we then obtain the final standard working equation
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One can generalize the last equation somewhat to the case of a third-order boundary condition on the
inner surface of a cylindrical drum (i.e., with r = r;)). However, in the majority of cases the heat-transfer
coefficient for the medium occupying the interior of the drum (the coolant) is so large that it is hardly ad-
visable to complicate an approximate equation (16) whose convenience for engineering calculations lies in
its simplicity.

From Eq. (16) it is possible to obtain a number of particular cases:

1. If the thickness of the drum wall is not taken into account, it follows that R =0; then B =0 and
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2. I we let ry approach infinity, then, by passage fo the limit, we will obtain appropriate equations
for a plate of thickness R instead of equations for a cylindrical wall. Here '
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and instead of (16) we will have
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obtained in [3] if we expand the logarithm into a series and limit ourselves to only its first two terms. Let
us note, incidentally, that it is preferable to use Eq. (18) rather than (19), since we thus avoid the subtrac-
tion of near numbers.

3. If we disregard the thickness of the plate, then, instead of (18), we obtain an equation coincident
with (17):
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Thus, with third-order accuracy of smallness in regard to the thickness of the frozen layer £, if the
thickness of the metal wall R is not taken into consideration, the equations for a flat wall and a cylindrical
one coincide. If thermal resistivity is taken into account, the formation time for an ice layer on a cylin-
drical wall will differ from that of an ice layer on a flat wall; moreover, the smaller the radius of the cy-
linder, the greater this difference will be.

T=—

(20)
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The numerical values obtained according to the approximate equations (16) and (18) agree well with
experimental results; this was verified in a series of experiments. The influence of wall thickness and
the thermal conductivity of the wall material on the formation time of the ice layer 7 and on the value ¢
proved to be especially significant. It is possible to assess this according to the equations derived.

NOTATION

T, is the time; t, is the ice temperature; t;, is the wall temperature; T is the phase-interface tem-
perature; te, is the temperature of the liquid undergoing freezing; ter, is the cryoscopic temperature;
A(XA), is the thermal conductivity coefficient of the ice (wall); c(c,), is the specific heat of the ice (wall);
v{y), is the ice (wall) density; «, is the heat transfer coefficient; p, is the specific heat of ice formation.
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